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Elastic modulus determination from depth sensing indentation testing
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Depth sensing indentation (DSI) testing is generally
considered as a simple method for the determination
of the Young’s modulus of materials [1-5]. Methods
found in the literature for the calculation of Young’s
modulus from indentation tests are based in most
cases on the theoretical solution of the Boussinesq
problem given by Sneddon [6] who determined the
load - indentation depth functions for various inden-
ters in an elastic hall’ space. The most frequently
used method of Young’s modulus determination was
developed by Oliver and Pharr [3]. Using Sneddon’s
results, thev elaborated an iterative procedure for the
determination of the reduced Young’s modulus, £,
(E. = (E/l —v?), where E is the Youngs modulus
and © is the Poisson’s ratio). The uncertainty of both
parameters is relatively high and the procedure is
complicated.

This letter is a continuation of a recently published
work [7] in which a semi-empirical formula is
proposed for the determination of the Young’s
modulus of materials from depth sensing Vickers
indentation testing. In the following, on the basis of
our previous results, this formula is verified by
calculating the elastic energy associated with the
stress fields building up benecath the indenter during
Vickers indentation.

Our indentation measurements were carried out in
the macrohardness region (P, = 100N) on the
following materials: metals (steel, 99.999% pure
Al Cu, Mg, Ni), soda lime silica glass, sodium
chloride, plastic (polypropylene), apatite—mullite
glass—ceramic, silicon, titanium oxide ceramic,
tetragonal zirconia polycrystalline ceramic contain-
ing 10mol% CeO> (Ce TZP) and S;N4 ceramics
with three different compositions (x; wt%S13Ny
x2 Wt%AIN xy wt %A 05 xy wt%Y>05; for material
A xp =90, x» =0, x3 =4, x4y = 6; for material B:
x1=87, »=4, 3 =4, x4 =25, for material C:
X1 =909, x=0 x=3, x4=06.1) sintered to
different densities.

During the loading period of the test the Vickers
pyramid penetrates the sample at constant velocity
and the same velocity is applied in the unloading
period when the pyramid moves backwards. The
load—penetration depth function can be described by
quadratic polynomials:
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P=cih+ 3 (1)
P = c5(h— ho) + c§ (h — hp)’ (2)

both in the loading and in the unloading periods,
respectively, where P is the load, £ is the penetration
depth, hy is the residual indentation depth after
removing the punch and ¢, ¢3, ¢3, ¢} are fitting
parameters. The total indentation work (H]) per-
formed during loading and the elastic work (J¥,)
regained during unloading can be calculated by the
integration of Equation | and 2, respectively (Fig. 1).
It was shown in our previous paper [7] that despite
the linear terms appearing in Equations 1 and 2, for
all of the materials investigated and in a wide load
range, the following relationships are wvalid with
good accuracy:
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According to our previous results, a semi-empirical

relationship has been found between the parameters
of the load-depth curves and the Young’s modulus
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Figure | Schematic diagram of an indentation cycle

2141



of the material investigated:

E=0.71(1 — %) d
il

“

(6)

Fig. 2 shows that the £ values determined from DSI
measurements with the help of Equation 6 agree well
within the experimental errors with the Young’s
moduli measured by four-point bending tests. There
are several models in the literature for describing the
elastic stress field in materials around axisymmetric
indenters. The most widely used one was developed
by Yoffe [8]. This model is a superposed combina-
tion of the Boussinesq field and the “blister” field.
In spherical polar coordinates (r, 6, ¢) the elastic
stress components are given by:
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where B is a constant, a measure of the strength of
the “blister” field. As a consequence of the high
stresses at the tip of the sharp indenter, a plastic
zone develops under the punch where Equations 7
are not valid. The shape of this zone changes with
the mechanical properties of the material investi-
gated and also with the type of the indenter applied
but it is roughly hemispherical, with a diameter
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Figure 2 Relationship between Young’s moduli determined by four-
point bending test and those calculated on the basis of Equation 6.
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equal to that of the contact impression [8—11]. In the
following the plastic zone is considered as a
hemispherical hydrostatic core with a radius of a,
the half diagonal of the Vickers pattern. In this
hydrostatic core the pressure is taken as the applied
mean contact pressure beneath the pyramid:

— Pm
- 2a?

(8)

where P, is the maximum applied load during the
indentation cycle.

The normal (o,;) and shear (1,9) components of the
stress field must be continuous at the zone boundary,
and B can be determined in Equation 7 from these
conditions. A single value of B can not satisfy these
conditions exactly; however, 0.019 Ha® is a good
approximation for the value of parameter B because
the difference between the stress components
calculated for both sides of the interface of the
hemispherical zone is minimum for this value.

The eclastic strain energy can be calculated with
the help of the above stress field. In the hydrostatic
zone the energy per unit volume is:

2

= 3H
w; = (1 — 2v) °F 9)
if the variation of the elastic modulus due to
compaction can be neglected. The volume of the
zone can be obtained by subtracting the volume of
the indenter tip from that of the hemisphere with
radius a:

V=19-4a (10)
Using Equations 9 and 10 the elastic energy in the
hydrostatic core can be given by:

W =2.85(1 — 2v)-

(1

The strain energy of the surrounding region (r > a)
can be obtained as follows:

wm = J{u,an + ugTip)dS (12)

where w, and uy are the elastic displacements, and S
is the hemispherical surface of radius a. Taking into
account that the “blister” components of the stress
field are retained after unloading, the elastic energy
of the surrounding region can be written as:
P
W = 1) (13

where f(v) depends on Poisson’s ratio (v) and
Av)=0.81, 0.815 or 0.82 as v =0.25, 0.29 or 0.33.

Adding the energy of Equation 11 to Equation 13,
the elastic energy regained during unloading (W) is
obtained as:

Z.3
E
where g(v) =2.24, 2.01 or 1.77 as v = 0.25, 0.29 or
0.33.

Using Equations 3 and 8 the elastic energy can be
expressed with E, H and the parameters of the

We = g@)- (14)



indentation curves;
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(15)

It can be shown (see the Appendix) that the mean

contact pressure, F., can be expressed in the
|

following form:
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For the meaning of 4 and ¢ see the Appendix.

Rearranging Equation 15 and using Equation 16,
the following relationship is obtained for Young’s
modulus:
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E =0.214g(v) (17)

Fig. 3 shows that the Young’s moduli determined
from our previous semi-empirical formula (Equation
6) agree well with those obtained from the elastic
energy (Equation 17) for all the materials investi-
gated. Consequently, the theoretical considerations
described above verify the application of the formula
of Equation 6 for the determination of the Young’s
modulus. This formula is simpler than Equation 17
determined on the basis of energetical considera-
tions.

Appendix

According to Oliver and Pharr [3] the mean contact
pressure (ff) can be given by the following expres-
sion:

H=a|% (A1)

Ie

where /i, is the contact depth at the maximum load
and «; = 0.0408.

Using Sneddon’s eclastic theory [6] and the
empirical results of Oliver and Pharr [3], the contact
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Figure 3 The Youngs moduli calculated from Equation & compared to
the moduli determined on the basis of Equation 17.

depth can be obtained as:

B R (A2)
S
where § is the slope of the initial part of the
unloading curve and & = (1.75 for the case of Vickers
indenter. In another work [12] it has been shown that
the mean contact pressure can be expressed with the
indentation parameters in the following way.
According to Equation 2, S can be given as:
dpP

S = d_h Prax

="+ 2 (b — hp). (A3)
The second term in Equation A3 may be expressed

as a fraction of S

kS = 2¢*3(hm — ho) (Ad)

and, similarly, the quadratic term of the load—depth
function of the unloading curve as a fraction of the
maximum load:

k* Br= C*S{hm - hﬂ}z {1\5)
With Equations A4 and AS, P,/S can be given as:
Pzn _ ﬂhm - !'-‘(}
S o
From Equations 2 and A2-A6, A, can be given in
the following form:

(A6)

2 ¢
1 4+ k%2
To simplify Equation A7 the quadratic term in
Equation 1 is expressed as a fraction of the
maximum load:

hc = Ay — (I — hf]) (A7)

ral‘“Dm = C3 hmz (Ag}

With the help of Equations AS, A7 and A8, the H
mean contact pressure in Equation Al can be
expressed as follows:

H=a - €3’ —

5
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According to our measurements for the different
materials and loadings investigated, k& and k™ vary
between 0.64 and 1. If k* =0.64 then (2(k*)"/%/
| + k%) = 0.98, therefore this quantity can be taken
as 1. Using Equation 5 the following relationship is
obtained for .

(A9)
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